Formyl-methionyl-leucyl-phenylalanine–Induced Dopaminergic Neurotoxicity via Microglial Activation: A Mediator between Peripheral Infection and Neurodegeneration?
نویسندگان
چکیده
BACKGROUND Parkinson disease (PD), a chronic neurodegenerative disease, has been proposed to be a multifactorial disorder resulting from a combination of environmental mechanisms (chemical, infectious, and traumatic), aging, and genetic deficits. Microglial activation is important in the pathogenesis of PD. OBJECTIVES We investigated dopaminergic (DA) neurotoxicity and the underlying mechanisms of formyl-methionyl-leucyl-phenylalanine (fMLP), a bacteria-derived peptide, in relation to PD. METHODS We measured DA neurotoxicity using a DA uptake assay and immunocytochemical staining (ICC) in primary mesencephalic cultures from rodents. Microglial activation was observed via ICC, flow cytometry, and superoxide measurement. RESULTS fMLP can cause selective DA neuronal loss at concentrations as low as 10(-13) M. Further, fMLP (10(-13) M) led to a significant reduction in DA uptake capacity in neuron/glia (N/G) cultures, but not in microglia-depleted cultures, indicating an indispensable role of microglia in fMLP-induced neurotoxicity. Using ICC of a specific microglial marker, OX42, we observed morphologic changes in activated microglia after fMLP treatment. Microglial activation after fMLP treatment was confirmed by flow cytometry analysis of major histocompatibility antigen class II expression on a microglia HAPI cell line. Mechanistic studies revealed that fMLP (10(-13) M)-induced increase in the production of extracellular superoxide from microglia is critical in mediating fMLP-elicited neurotoxicity. Pharmacologic inhibition of NADPH oxidase (PHOX) with diphenylene-iodonium or apocynin abolished the DA neurotoxicity of fMLP. N/G cultures from PHOX-deficient (gp91PHOX-/ -) mice were also insensitive to fMLP-induced DA neurotoxicity. CONCLUSION fMLP (10(-13) M) induces DA neurotoxicity through activation of microglial PHOX and subsequent production of superoxide, suggesting a role of fMLP in the central nervous system inflammatory process.
منابع مشابه
Adherence and morphology of guinea pig alveolar macrophages: effect of N-formyl methionyl peptides.
N-Formyl methionyl phenylalanine increased alveolar macrophage adherence and diameter and induced morphological changes associated with activation. N-Formyl methionyl phenylalanine may be useful in understanding macrophage activation and bacteriolytic function.
متن کاملActivation of neutrophils by cachectin/tumor necrosis factor: priming of N-formyl-methionyl-leucyl-phenylalanine-induced oxidative responsiveness via receptor mobilization without degranulation.
Human recombinant cachectin/tumor necrosis factor (TNF) was shown to prime neutrophils (PMNs), in a dose-dependent fashion, for subsequent oxidative responsiveness toward n-formyl-methionyl-leucyl-phenylalanine (FMLP). One basis for this phenomenon appeared to be TNF-mediated FMLP receptor mobilization. The maximal observed priming response was associated with a nearly twofold increase in the e...
متن کاملMicroglial activation induced by neurodegeneration: a proteomic analysis.
Neuroinflammation mediated by microglial activation appears to play an essential role in the pathogenesis of Parkinson disease; however, the mechanisms by which microglia are activated are not fully understood. Thus, we first evaluated the effects of two parkinsonian toxicants, manganese ethylene bisdithiocarbamate (Mn-EBDC) and 1-methyl-4-phenylpyridine (MPP+), on microglial activation as well...
متن کاملStandard Thermodynamic Functions of Tripeptides N-Formyl-l-methionyl-l-leucyl-l-phenylalaninol and N-Formyl-l-methionyl-l-leucyl-l-phenylalanine Methyl Ester
The heat capacities of tripeptides N-formyl-l-methionyl-l-leucyl-l-phenylalaninol (N-f-MLF-OH) and N-formyl-l-methionyl-l-leucyl-l-phenylalanine methyl ester (N-f-MLF-OMe) were measured by precision adiabatic vacuum calorimetry over the temperature range from T = (6 to 350) K. The tripeptides were stable over this temperature range, and no phase change, transformation, association, or thermal d...
متن کاملCarcinoembryonic antigen inhibits neutrophil activation by N-formyl-methionyl-leucyl-phenylalanine
Carcinoembryonic antigen (CEA) is a surface glycoprotein expressed in human epithelial cells and is released from their surface, especially during colorectal cancer. Frequently, colorectal cancer is accompanied by inflammation, where tumor-infiltrating neutrophils play an important role. CEA was also found to be a strong chemotactic agent for neutrophils. The purpose of this study was to find o...
متن کامل